MATH-821 Analytical Approximate Solutions of ODEs

Credit Hours: 3-0 Prerequisite: None

Course Objectives: The objective of this course is to introduce analytical and approximate methods for differential equations and make students familiar with advanced topics in spectral methods.

Core Contents: The variational iteration method, The Adomian decomposition method, Perturbation method, Hamiltonian approach, Homotopy analysis method, spectral methods, Fourier and Chebyshev Series, Discrete least square approximation, Chebyshev interpolation, Tau-spectral method. Collocation spectral methods.

Detailed Course Contents: The variational iteration method: Application of the variational iteration method. The Adomian decomposition method: Application of the Adomian decomposition method. Perturbation method: Theoretical background, application of the perturbation method. Energy balance method: Theoretical background, application of the energy balance method. Hamiltonian approach: Theoretical background, application of the energy balance method. Homotopy analysis method: Theoretical background. Homotopy analysis method: Theoretical background. Homotopy analysis method: Theoretical background.

Fourier and Chebyshev Series, The trigonometric Fourier series. The Chebyshev series.Discrete least square approximation. Chebyshev discrete least square approximation. Orthogonal polynomials least square approximation. Orthogonal polynomials and Gauss-type quadrature formulas. Chebyshev projection. Chebyshev interpolation. Collocation derivative operator. General formulation for linear problems. Tau-spectral method. Collocation spectral methods: A class of nonlinear boundary value problems. Spectral-Galerkinmethods.

Learning Outcomes: On successful completion of this course students will be able to:

- Understand and apply approximate methods such as the variational iteration method,
- The Adomian decomposition method, Perturbation method, Hamiltonian approach, Homotopy analysis method
- Understand and apply spectral methods for solving differential equations.

Textbooks:

- 1. M. Hermann, M. Saravi, (HS) Nonlinear Ordinary Differential Equations, Analytical Approximations and Numerical Methods, Springer (2016)
- 2. C. I. Gheorghiu, (CIG) Spectral Methods for Differential Problems, TiberiuPopoviciuInstitute of Numerical Analysis (2007)

Reference Book:

- 1. C. Canuto, M. Y. Hussaini, A. Quarteroni and T. A. Zang, Spectral Methods: Fundamentals in Single Domains, Springer (2006)
- 2. Lloyd N. Trefethen, Approximation Theory and Approximation Practice, Siam (2013).

ASSESSMENT SYSTEM

Nature of assessment	Frequency	Weightage (%age)
Quizzes	Minimum 3	10-15
Assignments	-	5-10
Midterm	1	25-35
End Semester	1	40-50
Examination		
Project(s)	-	10-20

Weekly Breakdown			
Wee k	Section	Topics	
1	HS 2.1-2.3	The variational iteration method, application of the variational iterationmethod.	
2	2.4, 2.5	The Adomian decomposition method, application of the Adomiandecomposition method.	
3	3.1	Perturbation method: theoretical background, application of perturbationmethod.	
4	3.2	Energy balance method: theoretical background, application of energybalance method.	
5	3.3	Hamiltonian approach: theoretical background, application of the Hamiltonian approach.	
6	3.4	Homotopy analysis method: theoretical background.	
7	3.4 (cont.)	Homotopy analysis method: application of the homotopy analysis method.	
8	1.1,1.2. 1,1.2.2	General properties, Fourier and Chebyshev Series, The trigonometricFourier series, The Chebyshev series.	
9	Mid Semester Exam		
10	1.2.3	Discrete least square approximation.	
11	1.2.4,1. 2.6	Chebyshev discrete least square approximation, Orthogonal polynomials least square approximation, Orthogonal polynomials and Gauss- type quadratureformulas	
12	1.3,1.4	Chebyshev projection, Chebyshev interpolation.	
13	1.4 (cont.)2. 1	Chebyshev interpolation (cont.) Collocation derivative operator. The idea behindthe spectral methods.	
14	2.2,2.3	General formulation for linear problems, Tau-spectral method.	
15	2.4	Collocation spectral methods (pseudo spectral), A class of nonlinearboundary value problems.	
16	2.5	Spectral-Galerkin methods.	
17		Review	
18	End Semester Exam		